Teoria de Cuerdas String Theory

¿Qué es la Teoría de Cuerdas?

Preliminares

Durante el siglo XX, la Física ha proporcionado una visión extremadamente precisa de los componentes fudamentales de la materia (las partículas elementales) y las leyes que regulan su comportamiento (las interacciones fundamentales). Es decir, ha proporcionado una explicación a la pregunta `¿de qué están hechas las cosas?´.

Hoy sabemos que la materia está hecha de átomos, que a su vez se componen de un núcleo y una nube de electrones que lo orbitan. El núcleo está a su vez compuesto de protones y neutrones, que a su vez están compuestos de quarks. Tanto los electrones como los quarks se comportan, con la precisión experimental actual, como partículas puntuales, sin estructura. Toda la materia del Universo está por tanto compuesta de quarks y leptones (los electrones son un tipo especifico de las partículas llamadas leptones). Asimismo, las fuerzas en la Naturaleza se pueden entender en términos de cuatro fuerzas fundamentales: la gravitacional, la electromagnética (que unifica la electricidad y el magnetismo), la interacción fuerte (que liga los quarks para formar protones y neutrones, y a los protones y neutrones para formar núcleos) y la interacción débil (que es capaz de transformar unas partículas en otras, y que subyace a los fenómenos radiactivos). En el marco de la Mecánica Cuántica, estas interacciones se interpretan a su vez como intercambios de determinadas partículas, los cuantos del campo de interacción. Estos cuantos son el fotón para la interacción electromagnética, los bosones W/Z para la interacción débil ylos gluones para las interacciones fuertes. La interacción gravitacional, una vez emmarcada dentro de la Mecánica Cuántica tendría su correspondiente partícula portadora, el gravitón.

Esta descripción de la Naturaleza y su comportamiento al nivel más fundamental subyace a la explicación de los fenómenos cotidianos (como la caída de los cuerpos, las órbitas planetarias, las corrientes elécticas, etc), pero permanece válida a energías mucho más altas, como a las altísimas temperaturas del Universo primitivo, o las que se alcanzan en los experimentos actuales de colisiones de partículas.

No obstante, esta descripción esta minada desde sus cimientos, ya que se basa en dos pilares de la Física Teórica que son, en su forma presente, mutuamente incompatibles. La descripción de las interacciones electromagnéticas, fuerte y débil, denominada Modelo Estándar (de Partículas Elementales) se enmarca dentro de la Teoría Cuántica de Campos, una forma avanzada de la Mecánica Cuántica. Sin embargo, la descripción de la interacción gravitacional se basa en la Teoría de la Relatividad General de Einstein, que es una teoría clásica, y por tanto no incluye efectos cuánticos.

La inclusión de efectos cuánticos en la interacción gravitacional siguiendo procedimientos habituales conlleva respuestas patológicas a muy altas energías, del orden de la escala de Planck (presentes en el Universo primordial a los 10-44 segundos, o equivalentemente 1017 veces más altas que las energías accesibles en aceleradores de partículas). Para información más extensa sobre el problema de la Gravitación y la Mecánica Cuántica, ver el artículo La gravedad y los cuantos, por el Prof. Enrique Alvarez (IFT, Madrid).

A pesar de que el problema se plantea en un regimen actualmente no accesible al experimento, éste continúa siendo uno de los problemas fundamentales de la Física Teórica: la formulación de una teoría que describa la interacción gravitacional de forma consistente a nivel cuántico, y que por tanto permita reconciliar la Relatividad General con la Mecánica Cuántica (y por ende la interacción gravitacional con las restantes interacciones fundamentales). Se puede encontrar una discusión de los problemad de unificación de las interacciones, y el papel de la teoría de cuerdas en este aspecto, en el artículo
La teoría de cuerdas, por el Prof. Sunil Mukhi (Tata Institute, India).

 

La Teoría de Cuerdas

La propuesta natural para lograr esta descripción unificada es la modificación del comportamiento de las partículas a energías muy altas, de modo que se corrija el comportamiento patológico de la gravedad a energías del orden de la escala de Plank. Las modificaciones serían muy pequeñas en las situaciones más familiares, pero entrarían de forma esencial en la explicación del comportamiento de la Naturaleza en sistema de gravedad muy intensa, donde la curvatura del espacio-tiempo es muy alta (radios de curvatura del orden de la longitud de Planck, es decir 10-35 m), como en los agujeros negros, o en el principio del Universo.

La teoría de cuerdas (o supercuerdas) propone precisamente una modificación de este tipo. Concretamente parte de la hipótesis de que las partículas elementales no son puntuales, sino objetos extensos en una dimensión (realmente cuerdas). El tamaño de estas cuerdas es muy pequeño, mucho menor que las menores escalas de longitud medidas experimentalmente (10-17 m). Aunque normalmente se supone que este tamaño es del orden de la longitud de Planck (10-35 cm), en algunos modelos este tamaño podría ser mayor (del orden de 10-18 cm). A energías muy bajas, no existe suficiente resolución para observar el tamaño de las cuerdas, y su comportamiento se reduce al de partículas puntuales. Sin embargo, a energías muy altas, la naturaleza extensa de las cuerdas comienza a manifestarse y modifica el comportamiento de las partículas de modo que sus interacciones gravitacionales, calculadas en la teoría, no presentan ningún comportamiento patológico.

Una introducción en español a la teoría de cuerdas y otros campos relacionados, se puede encontrar en el capítulo De la teoría de cuerdas del libro virtual A horcajadas en el tiempo, por Patricio T. Díaz Pazos (ver también Supercuerdas).

Algunas introducciones generales a teoría de cuerdas (en inglés) se pueden encontrar en

 

La teoría de cuerdas tiene profundas implicaciones en nuestra visión de la Naturaleza.

En la teoría de cuerdas, las diferentes partículas son simplemente diferentes modos de vibración de un único tipo de cuerda. Es más, determinados modos de vibración corresponden a las partículas portadoras de las interacciones fundamentales. Por tanto, implica una unificación definitiva, donde todas las partículas e interacciones reciben una explicación en términos de un solo tipo de objeto.

La consistencia matemática de la teoría implica que nuestro Universo posee dimensiones espaciales adicionales, curvadas sobre sí mismas y de un tamaño que las hace inobservables a las energías actuales, pero que influyen en el comportamiento de las partículas a energías muy altas (potencialmente accesibles en futuros experimentos, y ciertamente experimentadas en el Universo primitivo).

La descripción de sistemas gravitacionales en teoría de cuerdas incorpora de forma natural el concepto de holografía. Esta idea, propuesta por 'tHooft y Susskind en el conexto de agujeros negros, consiste en que los grados de libertad de una teoría gravitacional pueden codificarse en una hipersuperficie de una dimension menos (tal como un holograma bidimensional codifica una imagen tridimensional).
La correspondencia AdS/CFT en teoría de cuerdas permite una descripcion cuantitativa de fenómenos gravitacionales, tales como la microfísica de agujeros negros, en términos de una teoría holográfica dual, descrita como una teoría cuántica de campos.

Una introducción a holografía, la correspondencia AdS/CFT y sus implicaciones se puede encontrar en la charla de Juan Maldacena (IAS, Princeton) Agujeros negros, Cuerdas y Gravedad Cuántica.

Inversamente, la correspondencia AdS/CFT se puede aplicar a comprender fenómenos complicados en teorías de campos en acoplamiento fuerte (como la hidrodinámica del plasma de quarks y gluones) utilizando la descripción gravitacional dual, en la aproximación clásica.

Desde un punto de vista más abstracto, el espacio y el tiempo clásicos son conceptos derivados en teoría de cuerdas. La teoría de cuerdas propone en varios límites, versiones drásticamente modificadas del espaciotiempo de Einstein. Por ejemplo, en determinadas situaciones la geometría en teoría de cuerdas se modifica de forma que las coordenadas espaciotemporales no conmutan entre sí.

A pesar de todos los progresos en el campo, la teoría de cuerdas es en ciertos aspectos una teoría aún en construcción, cuya forma última se enmarca en la denominada (y todavía misteriosa) teoría M. Esta teoría, cuya estructura es tratable en situaciones particularmente sencillas, incluiría efectos de acoplamiento fuerte en la teoría de cuerdas, y trataría en pie de igualdad las cuedas denominadas fundamentales y otros objetos no perturbativos (las p-branas) presentes en la teoría.

Para más información sobre teoría de cuerdas y la teoría M, se pueden consultar

La teoría de cuerdas permanece como uno de los campos más activos en Física Teórica. La conferencia anual Strings reune cada año del orden de 500 investigadores en el campo para compartir sus ideas y discutir los avances de la teoría. Para conocer mejor los puntos de vista de algunos investigadores del campo, se pueden consultar por ejemplo las siguientes entrevistas (en español):

 

Einstein's General Theory of Relativity Stanford University

Modern Physics: Special Relativity Stanford

String Theory and M-Theory Stanford

Leonard Susskind gives a lecture on the string theory and particle physics. He is a world renown theoretical physicist and uses graphs to help demonstrate the theories he is presenting.

String theory (with its close relative, M-theory) is the basis for the most ambitious theories of the physical world. It has profoundly influenced our understanding of gravity, cosmology, and particle physics. In this course we will develop the basic theoretical and mathematical ideas, including the string-theoretic origin of gravity, the theory of extra dimensions of space, the connection between strings and black holes, the "landscape" of string theory, and the holographic principle.

This course was originally presented in Stanford's Continuing Studies program.

Stanford University:

http://www.stanford.edu/

Stanford Continuing Studies Program:

http://csp.stanford.edu/

Topics in String Theory (Winter 2011)

http://gesalerico.ft.uam.es/strings07/000_welcome07_spanish/011_welcome07_spanish.htm

 

¿Existe una teoría del todo?

Artículo publicado por Matt Crenson el 23 de abril de 2011 en Science News traducido por Kanijo en http://cienciakanija.com

La física, en realidad, son dos ciencias. Está la mecánica cuántica, el extraño y tumultuoso mundo donde las partículas aparecen y desaparecen y los gatos están a la vez vivos y muertos. Y está la relatividad general, la majestuosa visión de Einstein de objetos masivos que curvan el espacio y el tiempo.

Desde que surgieron estas dos visiones distintas del mundo a principios del siglo XX, generaciones de físicos han tratado de unificarlas en una sola teoría que, idealmente, describiría las cuatro fuerzas básicas de la naturaleza Incluso Einstein lo intentó, y falló. Ahora, después de unas décadas especialmente frustrantes con pocas pruebas nuevas para guiarnos, los físicos actuales pueden estar a punto de lograr unas tentadoras pistas sobre cómo encajan entre sí las fuerzas.

 

Se espera que las pistas lleguen desde el Gran Colisionador de Hadrones, un anillo de imanes superconductores en los Alpes diseñado para impactar protones entre sí a energías nunca antes vistas en la Tierra. El colisionador empezó a funcionar en marzo de 2010, y se espera que alcance su máxima potencia en 2014, cuando intentará colisionar protones al doble de la energía actual.

Incluso entonces, el LHC estará lejos de ser lo bastante potente para recrear la única fuerza unificada que los físicos creen que existió durante una fracción de segundo después del Big Bang – necesitarías un colisionador tan grande como el propio universo para hacer éso. Pero el LHC podría ser capaz de poner a prueba alguna de las predicciones hechas por la principal teoría que une la gravedad y las otras fuerzas.

La teoría de supercuerdas – o teoría de cuerdas para abreviar – une toda la física en un paquete, reduciendo la desconcertante taxonomía de partículas del actual bestiario de la física, el Modelo Estándar, a fragmentos idénticos de cuerdas, cada uno de menos de una milmillonésima de milmillonésima de milmillonésima de centímetro de largo. De acuerdo con la teoría de cuerdas, las partículas que portan las tres fuerzas incluidas en el Modelo Estándar – el fotón (electromagnetismo), el gluón (fuerza nuclear fuerte) y los bosones W y Z (fuerza nuclear débil) – son sólo los mismos minúsculos bailarines siguiendo cada uno ritmos distintos.

Y, al contrario que el Modelo Estándar, la teoría de cuerdas tiene un sitio para la gravedad.

Aunque hay propuestas junto a la teoría de cuerdas que intentan explicar cómo encajarían todas las fuerzas de la naturaleza, la mayor parte de esas teorías tienen grandes problemas. Algunas, por ejemplo, predicen la existencia de partículas que no pueden existir.

El principal obstáculo de la teoría de cuerdas es que requiere que haya muchas más cosas en el universo de lo que pueden estudiar los físicos, haciendo que la teoría sea muy difícil de poner a prueba. Por ejemplo, la mayor parte de versiones de la teoría de cuerdas requieren que el universo tenga 10 u 11 dimensiones – 9 ó 10 de espacio y una temporal, en lugar de las cuatro que experimenta la gente: arriba-abajo, delante-detrás, izquierda-derecha y pasado-futuro.

“Las fuerzas se unifican en 11 dimensiones, pero se dividen cuando pasan a cuatro dimensiones”, dice Gordon Kane, físico de la Universidad de Michigan en Ann Arbor.

Para que la teoría de cuerdas pueda decir algo sobre cómo surgen las fuerzas, los físicos tienen que calcular cómo se enrollan, o “compactifican”, estas dimensiones adicionales, en las cuatro que nos son familiares.

La teoría de cuerdas también hace aparecer una población de partículas compañeras en la sombra para cada una de las que actualmente se sabe que existen – una idea llamada supersimetría. De hecho, la supersimetría puede ser necesaria para unificar las fuerzas electromagnéticas, fuerte y débil, por lo que es importante incluso si la teoría de cuerdas no es correcta.

Cuando las fuerzas colisionan

Muchos físicos tienen grandes esperanzas en que el LHC encontrará indicios de partículas supersimétricas y dimensiones espaciales adicionales.

“Incluso si no vamos a las otras dimensiones, en cierto sentido las otras dimensiones vendrán a nosotros”, dice la físico de Harvard Lisa Randall.

En la década de 1990, cuando trabajaba con Raman Sundrum, ahora en la Universidad de Maryland en College Park, Randall demostró que podría ser posible detectar la desintegración de una partícula portadora de la gravedad que procediese de una dimensión extra. Encontrar tal partícula en el LHC verificaría la existencia de las dimensiones adicionales y sugeriría por qué la gravedad es mucho más débil que las otras tres fuerzas.

“Creo que sería algo bastante sorprendente”, comenta Randall. “Pero ésta es una de las cosas que podríamos encontrar, y es una de las que deberíamos buscar”.

La mayor parte de los físicos cree que es más probable que el LHC encuentre pruebas de compañeros supersimétricos de las partículas del Modelo Estándar. La apariencia y propiedades de los compañeros establecería algunas útiles restricciones sobre cómo el universo compactifica las 11 dimensiones predichas por la teoría de cuerdas.

Por ejemplo, si la superpartícula más ligera resulta ser el wino, la supercompañera del bosón W, portador de la fuerza débil, sería consistente con una versión de la teoría de cuerdas conocida con el expresivo apelativo de “Teoría M compactificada en un colector 7-D de holonomía G2?.

Tales partículas supersimétricas pueden haberse observado ya, de hecho – no en la Tierra, sino en el espacio. Parte de la materia oscura que se cree que forma más del 80 por ciento de la materia del universo podría estar compuesta de partículas supersimétricas, restos de los primeros momentos del universo. En los últimos años, dos instrumentos espaciales, el Telescopio de Rayos Gamma Fermi y la misión italiana PAMELA, han visto indicios de materia oscura en la Vía Láctea, en forma de rayos gamma y antimateria que podrían haberse producido por la colisión de partículas supersimétricas.

Dado que el LHC y futuros colisionadores pueden, por el momento, llevar a los físicos sólo hasta el momento junto después del Big Bang, la comprensión científica de una teoría unificada finalmente tendrá que llevar de la exploración de la vastedad del universo. Algunos físicos se preguntan si tal estrategia, que depende de encontrar e interpretar las pistas dejadas por la naturaleza, puede producir resultados comparables a los datos experimentales de alta precisión que llevaron al Modelo Estándar durante el siglo XX.

Pero la teoría de cuerdas no es ciencia del siglo XX – de hecho, el teórico de cuerdas Edward Witten la ha descrito como “física del siglo XXI que cayó por accidente en el siglo XX”. Ahora que ha llegado el siglo XXI, es hora de que se ponga a prueba la teoría de cuerdas.

Autor: Matt Crenson
Fecha Original: 11 de abril de 2011
Enlace Original

La teoría de cuerdas es un modelo fundamental de la física que básicamente asume que las partículas materiales aparentemente puntuales son en realidad "estados vibracionales" de un objeto extendido más básico llamado "cuerda" o "filamento".

De acuerdo con esta propuesta, un electrón no es un "punto" sin estructura interna y de dimensión cero, sino un amasijo de cuerdas minúsculas que vibran en un espacio-tiempo de más de cuatro dimensiones. Un punto no puede hacer nada más que moverse en un espacio tridimensional. De acuerdo con esta teoría, a nivel "microscópico" se percibiría que el electrón no es en realidad un punto, sino una cuerda en forma de lazo. Una cuerda puede hacer algo además de moverse; puede oscilar de diferentes maneras. Si oscila de cierta manera, entonces, macroscópicamente veríamos un electrón; pero si oscila de otra manera, entonces veríamos un fotón, o un quark, o cualquier otra partícula del modelo estándar. Esta teoría, ampliada con otras como la de las supercuerdas o la Teoría M, pretende alejarse de la concepción del punto-partícula.

¿Cómo son las interacciones en el mundo subatómico?: líneas espacio-tiempo como las partículas subatómicas. en el Modelo estándar (izquierda) o Cuerda cerrada sin extremos y en forma de círculo como afirma la teoría de cuerdas (derecha).

La siguiente formulación de una teoría de cuerdas se debe a Jöel Scherk y John Schwuarz, que en 1974 publicaron un artículo en el que demostraban que una teoría basada en objetos unidimensionales o "cuerdas" en lugar de partículas puntuales podía describir la fuerza gravitatoria. Aunque estas ideas no recibieron en ese momento mucha atención hasta la Primera revolución de supercuerdas de 1984. De acuerdo con la formulación de la teoría de cuerdas surgida de esta revolución, las teorías de cuerdas pueden considerarse de hecho un caso general de teoría de Kaluza-Klein cuantizada. Las ideas fundamentales son dos:

Los objetos básicos de la teoría no serían partículas puntuales sino objetos unidimensionales extendidos (en las cinco teorías de cuerdas convencionales estos objetos eran unidimensionales o "cuerdas"; actualmente en la teoría-M se admiten también de dimensión superior o "p-branas"). Esto renormaliza algunos infinitos de los cálculos perturbativos.
El espacio-tiempo en el que se mueven las cuerdas y p-branas de la teoría no sería el espacio-tiempo ordinario de 4 dimensiones sino un espacio de tipo Kaluza-Klein, en el que a las cuatro dimensiones convencionales se añaden 6 dimensiones compactificadas en forma de variedad de Calabi-Yau. Por tanto convencionalmente en la teoría de cuerdas existe 1 dimensión temporal, 3 dimensiones espaciales ordinarias y 6 dimensiones compactificadas e inobservables en la práctica.
La inobservabilidad de las dimensiones adicionales está ligada al hecho de que éstas estarían compactificadas, y sólo serían relevantes a escalas tan pequeñas como la longitud de Planck. Igualmente, con la precisión de medida convencional las cuerdas cerradas con una longitud similar a la longitud de Planck se asemejarían a partículas puntuales.

Desarrollos posteriores

Posteriormente a la introducción de las teorías de cuerdas, se consideró la necesidad y conveniencia de introducir el principio de que la teoría fuera supersimétrica; es decir, que admitiera una simetría abstracta que relacionara fermiones y bosones. Actualmente la mayoría de teóricos de cuerdas trabajan en teorías supersimétricas; de ahí que la teoría de cuerdas actualmente se llame teoría de supercuerdas. Esta última teoría es básicamente una teoría de cuerdas supersimétrica; es decir, que es invariante bajo transformaciones de supersimetría.

Actualmente existen cinco teorías de supercuerdas relacionadas con los cinco modos que se conocen de implementar la supersimetría en el modelo de cuerdas. Aunque dicha multiplicidad de teorías desconcertó a los especialistas durante más de una década, el saber convencional actual sugiere que las cinco teorías son casos límites de una teoría única sobre un espacio de 11 dimensiones (las 3 del espacio, 1 temporal y 6 adicionales resabiadas o "compactadas" y 1 que las engloba formando "membranas" de las cuales se podría escapar parte de la gravedad de ellas en forma de "gravitones"). Esta teoría única, llamada teoría M, de la que sólo se conocerían algunos aspectos, fue conjeturada en 1995.

Variantes de la teoría

La teoría de supercuerdas del espacio exterior es algo actual. En sus principios (mediados de los años 1980) aparecieron unas cinco teorías de cuerdas, las cuales después fueron identificadas como límites particulares de una sola teoría: la Teoría M. Las cinco versiones de la teoría actualmente existentes, entre las que pueden establecerse varias relaciones de dualidad son:

  1. La teoría tipo I, donde aparecen tanto "cuerdas" y D-branas abiertas como cerradas, que se mueven sobre un espacio-tiempo de 10 dimensiones. Las D-branas tienen 1, 5 y 9 dimensiones espaciales.
  2. La teoría tipo IIA, es también una teoría de 10 dimensiones pero que emplea sólo cuerdas y D-branas cerradas. Incorpora dos gravitines (partículas teóricas asociadas al gravitón mediante relaciones de supersimetría). Usa D-branas de dimensión 0, 2, 4, 6, y 8.
  3. La teoría tipo IIB.
  4. La teoría heterótica-O, basada en el grupo de simetría O(32).
  5. La teoría heterótica-E, basada en el grupo de Lie excepcional E8. Fue propuesta en 1987 por Gross, Harvey, Martinec y Rohm.

El término teoría de cuerda floja se refiere en realidad a las teorías de cuerdas bosónicas de 26 dimensiones y la teoría de supercuerdas de 10 dimensiones, esta última descubierta al añadir supersimetría a la teoría de cuerdas bosónica. Hoy en día la teoría de cuerdas se suele referir a la variante supersimétrica, mientras que la antigua se conoce por el nombre completo de "teoría de cuerdas bosónicas". En 1995, Edward Witten conjeturó que las cinco diferentes teorías de supercuerdas son casos límite de una desconocida teoría de 11 dimensiones llamada Teoría-M. La conferencia donde Witten mostró algunos de sus resultados inició la llamada Segunda revolución de supercuerdas.

En esta teoría M intervienen como objetos animados físicos fundamentales no sólo cuerdas unidimensionales, sino toda una variedad de objetos no perturbativos, extendidos en varias dimensiones, que se llaman colectivamente p-branas (este nombre es una aféresis de "membrana").

Controversia sobre la teoría

Aunque la teoría de cuerdas, según sus defensores, pudiera llegar a convertirse en una de las teorías físicas más predictivas, capaz de explicar algunas de las propiedades más fundamentales de la naturaleza en términos geométricos, los físicos que han trabajado en ese campo hasta la fecha no han podido hacer predicciones concretas con la precisión necesaria para confrontarlas con datos experimentales. Dichos problemas de predicción se deberían, según el autor, a que el modelo no es falsable, y por tanto, no es científico, o bien a que «La teoría de las supercuerdas es tan ambiciosa que sólo puede ser del todo correcta o del todo equivocada. El único problema es que sus matemáticas son tan nuevas y tan difíciles que durante varias décadas no sabremos cuáles son».

Falsacionismo y teoría de cuerdasArtículo principal:
Criterio de demarcación.
La teoría de cuerdas o la Teoría M podrían no ser falsables, según sus críticos. Diversos autores han declarado su preocupación de que la Teoría de cuerdas no sea falsable y como tal, siguiendo las tesis del filósofo de la ciencia Karl Popper, la Teoría de cuerdas sería equivalente a una pseudociencia.

El filósofo de la ciencia Mario Bunge ha manifestado recientemente:

La consistencia, la sofisticación y la belleza nunca son suficientes en la investigación científica.

La Teoría de cuerdas es sospechosa (de pseudociencia). Parece científica porque aborda un problema abierto que es a la vez importante y difícil, el de construir una teoría cuántica de la gravitación. Pero la teoría postula que el espacio físico tiene seis o siete dimensiones, en lugar de tres, simplemente para asegurarse consistencia matemática. Puesto que estas dimensiones extra son inobservables, y puesto que la teoría se ha resistido a la confirmación experimental durante más de tres décadas, parece ciencia ficción, o al menos, ciencia fallida.
La física de partículas está inflada con sofisticadas teorías matemáticas que postulan la existencia de entidades extrañas que no interactúan de forma apreciable, o para nada en absoluto, con la materia ordinaria, y como consecuencia, quedan a salvo al ser indetectables. Puesto que estas teorías se encuentran en discrepancia con el conjunto de la Física, y violan el requerimiento de falsacionismo, pueden calificarse de pseudocientíficas, incluso aunque lleven pululando un cuarto de siglo y se sigan publicando en las revistas científicas más prestigiosas.

Mario Bunge, 2006.

No obstante, en el estado actual de la ciencia, se ha dado el paso tecnológico que puede por fin iniciar la búsqueda de evidencias sobre la existencia de más de tres dimensiones espaciales, ya que en el CERN y su nuevo acelerador de partículas se intentará, entre otras cosas, descubrir si existe el bosón de Higgs y si esa partícula se expande solo en 3 dimensiones o si lo hace en más de 3 dimensiones, y se pretende lograr estudiando las discordancias en las medidas y observaciones de la masa de dicha partícula si finalmente se encuentra, por lo que en conclusión la teoría de cuerdas estaría, recientemente, intentando entrar en el campo de la falsabilidad.

Teoría de supercuerdas

La teoría de supercuerdas es un esquema teórico para explicar todas las partículas y fuerzas fundamentales de la naturaleza en una sola teoría, que modela las partículas y campos físicos como vibraciones de delgadas cuerdas supersimétricas, las cuales se mueven en un espacio-tiempo de más de 4 dimensiones.

Una de las motivaciones esgrimidas por los teóricos de las supercuerdas es que el esquema es una de las mejores teorías candidatas para formular una teoría cuántica de la gravedad. La teoría de las supercuerdas es una taquigrafía de la teoría supersimétrica de cuerdas porque, a diferencia de la teoría de cuerdas bosónica, ésta es la versión de la teoría de cuerdas que, mediante la supersimetría, incorpora a los fermiones.

La teoría de las supercuerdas comprende cinco teorías o formulaciones alternativas de teorías de cuerdas combinadas, en la que se han introducido requerimientos de supersimetría. El nombre de teoría de cuerdas se usa actualmente como sinónimo, ya que todas las teorías de cuerdas ampliamente estudiadas son, de hecho, teorías de supercuerdas.

La idea fundamental es que las partículas en realidad son cuerdas que vibran en resonancia a una frecuencia de la longitud de Planck y en donde el gravitón sería una cuerda de espín 2 y masa nula.

Recientemente se ha podido probar que varias de estas formulaciones son equivalentes y tras todas ellas podría existir una teoría unificada o teoría del todo. Las cinco teorías existentes no serían más que casos límite particulares de esta teoría unificada, denominada provisionalmente como Teoría M. Esta teoría M intenta explicar a la vez todas las partículas subatómicas existentes y unificar las cuatro fuerzas fundamentales de la naturaleza. Define el universo formado por multitud de cuerdas vibrantes, ya que es una versión de la teoría de cuerdas que incorpora fermiones y la supersimetría.

El principal problema de la física actual es poder incorporar la fuerza de la gravedad tal y como la explica la teoría de la relatividad general al resto de las fuerzas físicas ya unificadas. La teoría de las supercuerdas sería un método de unificación de dichas teorías. La teoría está lejos de estar acabada y perfilada, ya que hay muchísimas variables sin definir, por lo que existen varias versiones de la misma.

 

El problema de fondo en la física teórica es armonizar la teoría de la relatividad general, donde se describen la gravitación y las estructuras a gran escala (estrellas, galaxias, cúmulos), con la mecánica cuántica, donde se describen las otras tres fuerzas fundamentales que actúan a nivel atómico.

El desarrollo de la teoría cuántica de campos de una fuerza invariable resulta en infinitas (y útiles) probabilidades. Los físicos han desarrollado técnicas matemáticas de renormalización para eliminar esos infinitos de tres de las cuatro fuerzas fundamentales -electromagnetismo, nuclear fuerte y nuclear débil- pero no de la gravedad. El desarrollo de la teoría cuántica de la gravedad debe, por lo tanto, venir de diferente manera que de los usados para las otras fuerzas.

La idea básica es que los constituyentes fundamentales de la realidad son cuerdas de una longitud de Planck (cercano a 10?35 m) que vibran a frecuencias de resonancia. Cada cuerda en teoría tiene una única resonancia, o armonía. Diferentes armonías determinan diferentes fuerzas fundamentales. La tensión en la cuerda es del orden de las fuerzas de Planck (1044 N). El gravitón (nombre propuesto para la partícula que lleve la fuerza gravitacional), por ejemplo, es predicha por la teoría que sea una cuerda con amplitud cero. Otra idea clave de la teoría es que no pueden ser detectadas diferencias mensurables entre cuerdas que recapitulan sobre dimensiones pequeñas en sí mismas y muchas que se mueven en grandes dimensiones (p.e. que afectan a una dimensión de tamaño R iguales a una de tamaño 1/R). Las singularidades son evitadas porque las consecuencias observables del "gran colapso" nunca alcanzan el tamaño cero. De hecho puede el universo comenzar un pequeño "gran colapso" de procesos, la teoría de cuerdas dice que el universo nunca puede ser más pequeño que el tamaño de una cuerda, a ese punto podría comenzar a expandirse.

El problema de las dimensiones

Aunque el universo físico observable tiene tres dimensiones espaciales y una dimensión temporal, nada prohíbe a una teoría describir un universo con más de cuatro dimensiones, especialmente si existe un mecanismo de "inobservabilidad aparente" de las dimensiones adicionales. Ése es el caso de las teoría de cuerdas y la teoría de supercuerdas que postulan dimensiones adicionales compactificadas y que sólo serían observables en fenómenos físicos que involucran altísimas energías. En el caso de la teoría de supercuerdas, la consistencia de la propia teoría requiere un espacio-tiempo de 10 ó 26 dimensiones. El conflicto entre la observación y la teoría se resuelve compactando las dimensiones que no se pueden observar en el rango de energías habituales. De hecho, la teoría de supercuerdas no es la primera teoría física que propone dimensiones espaciales extra; a principios del siglo XX se propuso una teoría geométrica del campo electromagnético y gravitatorio conocida como teoría de Kaluza-Klein que postulaba un espacio-tiempo de 5 dimensiones. Posteriormente la idea de Kaluza y Klein se usó para postular la teoría de la supergravedad de 11 dimensiones que también utiliza la supersimetría.

La mente humana tiene dificultad visualizando dimensiones mayores porque solo es posible moverse en 3 dimensiones espaciales. Una manera de tratar con esta limitación es no intentando visualizar dimensiones mayores del todo sino simplemente pensando, al momento de realizar ecuaciones que describan un fenómeno, que se deben realizar más ecuaciones de las acostumbradas. Esto abre las interrogantes de que estos 'números extra' pueden ser investigados directamente en cualquier experimento (donde se mostrarían resultados en 1, 2, 2+1 dimensiones a científicos humanos). Así, a su vez, aparece la pregunta de si este tipo de modelos que se investigan en este modelado abstracto (y aparatos experimentales potencialmente imposibles) puedan ser considerados 'científicos'. Las formas de seis dimensiones de Calabi-Yau pueden contar con dimensiones adicionales por la teoría de supercuerdas.

Una teoría que la generaliza es la teoría de branas, en donde las cuerdas son sustituidas por constituyentes elementales de tipo "membrana", de ahí su nombre. La existencia de 10 dimensiones es matemáticamente necesaria para evitar la presencia de incongruencias matemáticas en su enunciado.

Cantidad de teorías de supercuerdas

Los físicos teóricos fueron perturbados por la existencia de cinco diferentes teorías de cuerdas. Esto aconteció bajo la denominada segunda revolución de supercuerdas en los años 1990 donde fueron postuladas las 5 teorías de cuerdas, siendo diferentes casos límite de una única teoría: la teoría M.

Teoría de Cuerdas
Tipos Dimensiones Espaciales Detalles
Bosonica 26 Solo bosones, no fermiones, significa solo fuerzas, no materia, con cuerdas abiertas y cerradas; mayor defecto: una partícula con masa imaginaria llamada taquión
I 10 Supersimetría entre fuerza y materia, con cuerdas abiertas y cerradas, libre de taquiones, grupo de simetría SO(32)
IIA 10 Supersimetría entre fuerza y materia, solo con cuerdas cerradas, libre de taquiones, fermiones sin masa que giran a ambas direcciones
IIB 10 Supersimetría entre fuerza y materia, solo con cuerdas cerradas, libre de taquiones. fermiones sin masa que giran en una sola dirección
HO 10 Supersimetría entre fuerza y materia, solo con cuerdas cerradas, libre de taquiones, heterótica, difieren entre cuerdas de movimiento derecho e izquierdo, grupo de simetría es SO(32)
HE 10 Supersimetría entre fuerza y materia, solo con cuerdas cerradas, libre de taquiones, heterótica, difieren entre cuerdas de movimiento derecho e izquierdo, grupo de simetría E8×E8

Las cinco teorías de supercuerdas consistentes son:

La teoría de cuerdas Tipo I tiene una supersimetría en sentido diez-dimensional (16 supercargas). Esta teoría es especial en el sentido de que está basada en una orientación abierta y cerrada, mientras el resto se basan en cuerdas con orientaciones cerradas.
La teoría de cuerdas Tipo II tiene dos supersimetrías en sentido de 10 dimensiones (32 supercargas). Hay de hecho dos tipos de cuerdas Tipo II llamadas tipo IIA y IIB. Difieren principalmente en el hecho que la teoría IIA es no quiral (conservando la paridad), mientras que la teoría IIB es quiral (violando la paridad).
La teoría de la cuerda heterótica está basada en un peculiar híbrido de una supercuerda de tipo I y una cuerda bosónica. Hay 2 tipos de cuerdas heteróticas que difieren en su diez-dimensional grupo de gauge: la cuerda heterótica E8×E8 y la SO(32). (el nombre heterótico SO(32) es un poco inexacta en el SO(32) del Grupo de Lie, las teorías son un cociente de Spin(32)/Z2 que no es equivalente a SO(32).)
Las teorías quirales de gauge pueden ser inconsistentes en sus anomalías. Esto ocurre cuando un bucle del Diagrama de Feynman causa un rompimiento de la mecánica cuántica de la simetría de gauge. Anulando anomalías se limita a las posibles teorías de cuerdas.

Integrando relatividad general con mecánica cuántica

La relatividad general normalmente se refiere a situaciones que envuelven objetos masivos grandes en lejanas regiones del espacio-tiempo donde la mecánica cuántica se reserva para escenarios a escala atómica (regiones pequeñas de espacio-tiempo). Las dos son muy difícilmente usadas juntas, y el caso más común en donde se combina su estudio son los agujeros negros. Teniendo "picos de densidad" o máximo cantidades de materia posible en el espacio, y un área muy pequeña, las dos deben ser usadas en sincronía para predecir condiciones en ciertos lugares; aun cuando son usados juntos, las ecuaciones se desmoronan y brindan respuestas imposibles, tales como distancias imaginarias y menos de una dimensión.

El mayor problema con su congruencia es que, a dimensiones menores a las de Planck, la relatividad general predice una certeza, una superficie fluida, mientras que la mecánica cuántica predice una probabilidad, una superficie deformada; que no son compatibles. La teoría de supercuerdas resuelve este requerimiento, remplazando la idea clásica de partículas puntuales con bucles. Esos bucles tendrían un diámetro promedio de una longitud de Planck, con variaciones extremadamente pequeñas, que ignora completamente las predicciones de la mecánica cuántica a dimensiones menores a las de Planck, y que para su estudio no toma en cuenta esas longitudes.

Falsacionismo y teoría de supercuerdas

La crítica principal de que es objeto la Teoría de cuerdas es de que sea, fundamentalmente, imposible de falsear, debido a su naturaleza intrínseca: tiene la suficiente flexibilidad matemática como para que sus parámetros se puedan moldear para encajar con cualquier tipo de realidad observada. Para ilustrar la confusa situación que domina este campo de investigación, baste citar el reciente escándalo Bogdanov, dos hermanos que consiguieron publicar en prestigiosas revistas científicas teorías absurdas y carentes de sentido. El físico alemán Max Niedermaier concluyó que se trataba de pseudociencia, escrita con una densa jerga técnica, para evitar el sistema de revisión por pares de la física teórica. Según el físico-matemático John Baez, su trabajo "es una mezcolanza de frases aparentemente plausibles que contienen las palabras técnicas correctas en el orden aproximadamente correcto. Pero no hay lógica ni cohesión en lo que escriben." Según el físico Peter Woit en la prestigiosa revista Nature: "El trabajo de los Bogdanoff resulta significativamente más incoherente que cualquier otra cosa publicada. Pero el creciente bajo nivel de coherencia en todo el campo les permitió pensar que habían hecho algo sensato y publicarlo."

Teoría M

En física, la Teoría-M (a veces denominada Teoría-U) es la proposición de una “Teoría universal” que unifique las cinco teorías de las Supercuerdas. Basada en los trabajos de varios científicos teóricos (incluidos: Chris Hull, Paul Townsend, Ashoke Sen, Michael Duff y John H. Schwarz), Edward Witten, del “Institute for Advanced Study”, sugirió la existencia de las Supercuerdas en una conferencia en la USC en 1995, usando a la Teoría-M para explicar un número de dualidades previamente observadas, dando el chispazo para una nueva investigación de la teoría de las cuerdas llamada segunda revolución de supercuerdas.

En esta teoría se identifican 11 dimensiones, donde la supergravedad interactúa entre membranas de 2 a 5 dimensiones. Esto evidenciaría la existencia de infinitos Universos paralelos, algunos de los cuales serían como el nuestro con mayores o menores diferencias, y otros que serían impensables con 4 ó 5 dimensiones. Esto explicaría la debilidad de la gravedad, pues la partícula del gravitón sería la única que podría pasar por todas las membranas, perdiendo su fuerza.

A comienzos de los años 1990, se demostró que las varias teorías de las Supercuerdas estaban relacionadas por dualidades, que permitían a los físicos relacionar la descripción de un objeto en una teoría de Supercuerda para eventualmente describir un objeto diferente de otra teoría. Estas relaciones implican que cada una de las teorías de Supercuerdas es un diferente aspecto de una sola teoría, propuesta por Witten, y llamada “Teoría-M”

La Teoría-M no está completa; sin embargo, puede aplicarse a muchas situaciones. La teoría del electromagnetismo también se encontraba en el mismo estado a mediados del siglo XIX; había teorías separadas para el magnetismo y la electricidad y, aunque eran conocidas por estar relacionadas, la relación exacta no se clarificó hasta que James Clerk Maxwell publicó sus ecuaciones en su trabajo de 1864, Una Teoría Dinámica del Campo Electromagnético. Witten había sugerido que una fórmula general de la teoría-M probablemente requeriría del desarrollo de un nuevo lenguaje matemático. Algunos científicos han cuestionado los éxitos tangibles de la Teoría-M dado su estado incompleto y su poder limitado de predicción incluso después de años de intensas investigaciones.

Se creía antes de 1995 que había cinco teorías de supercuerda consistentes, que son llamadas respectivamente: Teoría de cuerda Tipo I, Teoría de cuerda Tipo IIA, Teoría de cuerda Tipo IIB, Teoría Heterótica SO (32) (cuerda HO), y la Teoría Heterótica E8×E8 (cuerda HE).

Como sugieren sus nombres, algunas de estas teorías de cuerdas están relacionadas entre sí. En 1990, los teóricos descubrieron que algunas de estas relaciones eran tan fuertes que se podían usar como su identificación. La Teoría de cuerda Tipo IIA y la de Tipo IIB están conectadas por dualidad-T; esto significa que esencialmente la descripción de la Teoría de cuerda Tipo IIA de un círculo de radio R es exactamente el mismo en la descripción del IIB de círculo de radio 1/R, que son distancias medidas en unidades de distancia de Planck.

Este es un resultado muy profundo. Primero, es un resultado intrínsecamente mecánico-cuántico: la identificación no es verdaderamente clásica. Segundo, porque podemos construir un espacio al unir círculos en varias formas, se puede notar que cualquier espacio descrito por la Teoría de cuerda IIA también puede ser vista como un espacio diferente al descrito por la Teoría IIB. Esto significa que podemos identificar la Teoría IIA con la Teoría IIB: cualquier objeto que puede ser descrito por la Teoría IIA tiene una descripción equivalente, aunque aparentemente diferente, en términos de la Teoría IIB. Esto sugiere que tanto la Teoría IIA como la Teoría IIB, son aspectos de una misma teoría.

[Características de la teoría M

La teoría M contiene mucho más que cuerdas. Contiene tanto objetos de mayor como menor dimensionalidad. Estos objetos son llamados P-branas* donde p denota su dimensionalidad (así, 1-brana podría ser una cuerda y 2-brana una membrana) o D-branas (si son cuerdas abiertas). Objetos de mayores dimensiones siempre estuvieron presentes en la teoría de las cuerdas pero nunca pudieron ser estudiados antes de la Segunda Revolución de las Supercuerdas debido a su naturaleza no-perturbativa. Incluso se ha sugerido que el Big bang fue producido por la colisión de dos de estas membranas, brotando nuestro Universo.

Nota: La Teoría-M , concibe una organizacion de esferas/membranas sin fin pero con un orden subyacente. Para esta hipótesis, orden holográfico, definirá entre otros, el dinamismo y/o relaciones dentro del sistema.-

D-brana

En física teórica, las D-branas son una clase especial de P-branas, nombradas en honor del matemático Johann Dirichlet por el físico Joseph Polchinski. Las condiciones de contorno de Dirichlet se han utilizado desde hace mucho en el estudio de líquidos y de la teoría del potencial, donde implican especificar una cierta cantidad a lo largo de toda una frontera. En la dinámica de fluidos, la fijación de una condición de límite de Dirichlet podía significar asignar una velocidad del fluido conocida a todos los puntos en una superficie; al estudiar electrostática, se puede establecer condiciones límite de Dirichlet por la fijación de los valores conocidos del voltaje en localizaciones particulares, como las superficies de los conductores. En cualquier caso, las localizaciones en las cuales se especifican los valores se llaman una D-brana. Estas construcciones adquieren importancia especial en teoría de cuerdas, porque las cuerdas abiertas deben tener sus puntos finales unidas a D-branas.

Las D-branas se clasifican típicamente por su dimensión, que es indicada por un número escrito después de la D. Una D0-brana es un solo punto, una D1-brana es una línea, una D2-brana es un plano, y una D25-brana llena el espacio hiper-dimensional considerado en la teoría de la cuerda bosónica.

D-branas en teoría de cuerdas

Fondo teóricoLa mayoría de las versiones de la teoría de cuerdas implican dos tipos de cuerda: cuerdas abiertas con puntos finales desligados y cuerdas cerradas que forman lazos cerrados. Explorando las consecuencias de la acción Nambu-Goto, queda claro que la energía puede fluir a lo largo de una cuerda, deslizándose hasta el punto final y desapareciendo. Esto plantea un problema: la conservación de la energía establece que la energía no debe desaparecer del sistema. Por lo tanto, una teoría consistente de cuerdas debe incluir lugares en los cuales la energía pueda fluir cuando deja una cuerda; estos objetos se llaman D-branas. Cualquier versión de la teoría de cuerdas que permite cuerdas abiertas debe incorporar necesariamente D-branas, y todas las cuerdas abiertas debe tener sus puntos finales unidos a estas branas. Para un teórico de cuerdas, las D-branas son objetos físicos tan "reales" como las cuerdas y no sólo entes matemáticos que reflejan un valor.

Se espera que todas las partículas elementales sean estados vibratorios de las cuerdas cuánticas, y es natural preguntarse si las D-branas están hechas de alguna modo con las cuerdas mismas. En un sentido, esto resulta ser verdad: entre el espectro de las partículas que las vibraciones de la cuerda permiten, encontramos un tipo conocido como taquión, que tiene algunas propiedades raras, como masa imaginaria. Las D-branas se pueden imaginar como colecciones grandes de taquiones coherentes, de un modo parecido a los fotones de un rayo láser.

Las cuerdas que están restringidas a D-branas se pueden estudiar por medio de una teoría cuántica de campos de 2 dimensiones renormalizable.

Cosmología de Mundo de Branas

Esto tiene implicaciones en la cosmología, porque la teoría de cuerdas implica que el universo tienen más dimensiones que lo esperado (26 para las teorías de cuerdas bosónicas y 10 para las teorías de supercuerdas) tenemos que encontrar una razón por la cual las dimensiones adicionales no son evidentes. Una posibilidad sería que el universo visible es una D-brana muy grande que se extiende sobre tres dimensiones espaciales. Los objetos materiales, conformados de cuerdas abiertas, están ligados a la D-brana, y no pueden moverse "transversalmente" para explorar el universo fuera de la brana. Este panorama se llama una Cosmología de branas. La fuerza de la gravedad no se debe a las cuerdas abiertas; los gravitones que llevan las fuerzas gravitacionales son estados vibratorios de cuerdas cerradas. Ya que las cuerdas cerradas no tienen porque estar unidas a D-branas, los efectos gravitacionales podrían depender de las dimensiones adicionales perpendiculares a la brana.

Agujeros negros

Otro uso importante de D-branas ha sido el estudio de los agujeros negros. La teoría de D-branas permite asignar los estados cuánticos de los agujeros negros.

Las branas y el “bulk”

La idea central es que la parte visible de nuestro universo de cuatro dimensiones está limitada a una brana dentro de un espacio de dimensionalidad superior llamado el "bulk" o “bulto“ en español. Las dimensiones adicionales, compactas, están enrolladas en un espacio de Calabi-Yau. En el modelo del "bulk", otras branas pueden estar moviéndose a través del bulk. Interacciones con el Bulk, y posiblemente con otras branas, pueden influenciar nuestro universo-brana y de allí que puede introducir efectos no vistos en más modelos cosmológicos estándar.

Explicación de la debilidad de la gravedad

Esta es una de las características atractivas de esta teoría, en la que explica del porque la debilidad de la gravedad lo es con respecto al resto de las fuerzas fundamentales de la naturaleza, solventando el llamado problema de jerarquía. En el escenario de branas, las otras tres fuerzas de la naturaleza, el electromagnetismo y las fuerzas nucleares débil y fuerte, están confinadas como cuerdas ancladas a nuestra 3-brana universo, difiriendo la gravedad, que se piensa sea como una cuerda cerrada no anclada, y por lo tanto, gran parte de su fuerza atractiva "filtra" o se escapa al "bulk". Como consecuencia de ello, la fuerza de la gravedad debe aparecer con más fuerza en las pequeñas escalas, donde menos fuerza gravitacional se ha "filtrado".

Modelos basados en la cosmología de branasExisten dos grandes grupos de teorías basados en la cosmología de branas. El primer grupo mezcla aspectos de la teoría M con la cosmología inflacionaria. El segundo grupo, de más reciente formulación, argumenta la existencia de una cosmología de branas basada en la teoría M sin recurrir al modelo inflacionario. El modelo de Randall-Sundrum (RS1 y RS2) se puede ajustar a los criterios de cualquier modelo de ambos grupos.

En la cosmología inflacionaria el universo adquiere sus características observables (problema del horizonte, planitud y de monopolos magneticos) después del Big Bang, mientras tanto en los modelos ecpirótico y cíclico las características observables derivan de un momento previo al big bang debido a un choque entre branas. El cosmólogo Alexander Vilenkin argumenta que en los modelos inflacionarios el tiempo esta autocontenido dentro del universo marcando el Big Bang su comienzo (tiempo finito). Mientras tanto el cosmólogo Neil Turok propone que en los modelos donde se dan los choques entre branas el tiempo ya existía antes del Big Bang (tiempo infinito).

En los modelos basados en la cosmología inflacionaria se puede imaginar un infinito océano que debido a las fluctuaciones de la física cuántica se forman branas como burbujas en el agua hirviendo. De está forma surgen de momento a momento Big Bangs y unas burbujas desaparecen y otras crecen (inflación) debido a las mismas fluctuaciones. Figuradamente cada universo se podría considerar como una burbuja (brana) nadando en un océano infinito de agua hirviendo (falso vacío). La formulación de esta teoría esta fuertemente influenciada por la interpretación de la mecánica cuántica de Hugh Everett

Modelo cíclico.En los modelos basados en el choque de branas, a diferencia de los modelos inflacionarios, cada brana ya existía antes del big bang y las características que llevaban antes del choque se imprimen en las características del siguiente universo formado después del choque. Los modelos pre-big bang, ecpirótico y cíclico pertenecen a este grupo de teorías.

wikipedia.org

En el corazón de la cosmología moderna hay un misterio: ¿Por qué nuestro universo parece tan exquisitamente preparado para crear las condiciones necesarias para la vida? En este ‘tour de force’ por algunos de los mayores descubrimientos de la ciencia, Brian Greene muestra cómo en la idea alucinante de un multiverso puede estar la respuesta al enigma.

Brian Greene is perhaps the best-known proponent of superstring theory, the idea that minuscule strands of energy vibrating in a higher dimensional space-time create every particle and force in the universe. Full bio »

Translated into Spanish by Sebastian Betti
Reviewed by Jaime Gonzalez Magallanes
Comments? Please email the translators above.

http://www.ted.com/talks/lang/es/brian_greene_why_is_our_universe_fine_tuned_for_life.html

Teoria de branas Brian greene

Mas alla del Cosmos

Brian Greene: ¿Es nuestro universo el único universo?

 

 

Physics

Cosmology


Roger Penrose - Modelo de Universo Cíclico (Cyclic Universe Model)

Before the Big Bang - Roger Penrose

La Teoria M

2 responses to “Teoria de Cuerdas String Theory

  1. Pingback: Teoria de Cuerdas String Theory

  2. Pingback: Teoria de Cuerdas String Theory | Teknociencia.net