Tag Archives: Universo

LHCb observa dos nuevas partículas bariónicas nunca vistas anteriormente

La colaboración del experimento LHCb del Gran Colisionador de Hadrones (LHC) del CERN anunció hoy el descubrimiento de dos nuevas partículas de la familia bariónica, las formadas por quarks. Las partículas, conocidas como Xi_b'- y Xi_b*-, fueron predichas por el modelo de quarks, pero no habían sido vistas hasta ahora. Una partícula similar, Xi_b*0, fue encontrada en 2012 por el experimento CMS. La colaboración LHCb ha enviado un artículo informando del hallazgo a la revista Physical Review Letters.

Al igual que los protones que acelera el LHC, las nuevas partículas son bariones hechos de tres quarks y unidos por la fuerza nuclear fuerte (una de las cuatro interacciones fundamentales en la naturaleza). Sin embargo, los tipos de quarks son diferentes: las nuevas partículas Xib contienen ambas un quark belleza (b), un extraño (s) y uno abajo (d), mientras que el protón está formado por dos quarks arriba (u) y un abajo (d). Debido a la masa de los quarks b, estas partículas son seis veces más masivas que un protón.

Continue reading

Proponen sustituir el modelo WIMPs de materia oscura por el modelo SIMPs de partículas fuertemente interactuantes.

Proponen sustituir el modelo WIMPs de materia oscura por el modelo SIMPs de partículas fuertemente interactuantes.

En esta simulación se ve la formación de galaxias enanas. Fuente: John Wise, Tom Abel, Ralf Kaehler, Universidad de Stanford.

En esta simulación se ve la formación de galaxias enanas. Fuente: John Wise, Tom Abel, Ralf Kaehler, Universidad de Stanford.

Uno de los problemas más importantes de la Física actual es saber la naturaleza de la materia oscura. Podemos observar los efectos de materia oscura cuando miramos al Universo y los modelos cosmológicos simplemente no funcionan sin materia oscura, así que esta posiblemente exista.
Continue reading

Tormenta de rayos gamma en un agujero negro supermasivo

En la noche del 12 al 13 de noviembre de 2012, los telescopios MAGIC de rayos gamma, ubicados en el Observatorio del Roque de los Muchachos, se encontraban observando el cúmulo de galaxias de Perseo (situado a una distancia de unos 260 millones de años luz), cuando detectaron este fenómeno insólito proveniente de una de las galaxias del cúmulo, conocida como IC310. Al igual que muchas otras galaxias, IC310 alberga en su centro un agujero negro supermasivo (varios cientos de millones de veces más pesado que el Sol) el cual, de forma esporádica, produce intensas llamaradas de rayos gamma. Lo que sorprendió a los científicos en esta ocasión fue la extrema brevedad de dichas llamaradas, con una duración de tan solo unos pocos minutos.

"La Relatividad nos dice que ningún objeto puede emitir durante un tiempo menor al que le lleva a la luz atravesarlo. Sabemos que el agujero negro en IC310 tiene un tamaño de unos 20 minutos luz, alrededor de tres veces la distancia entre el Sol y la Tierra. Esto quiere decir que ningún fenómeno producido por el mismo debería durar menos de 20 minutos", nos cuenta Julian Sitarek, investigador Juan de la Cierva en el IFAE (Barcelona), y uno de los tres científicos que han liderado el estudio. Sin embargo, las llamaradas que se observaron en IC310 duraban menos de 5 minutos.

Los científicos de la Colaboración MAGIC proponen un nuevo mecanismo, según el cual esta "tormenta de rayos gamma" se produce en las regiones de vacío que se forman cerca de los polos magnéticos del agujero negro. En estas zonas vacías se crean momentáneamente campos eléctricos muy intensos, que son destruidos cuando la zona es ocupada de nuevo por partículas cargadas. Dichas partículas se aceleran a velocidades muy próximas a la de la luz y transforman en rayos gamma los fotones que encuentran en su camino al transferirles parte de su energía. El tiempo que tarda la luz en recorrer una de estas zonas vacías es de pocos minutos, lo que encaja con lo observado en IC310.

Escenario para el origen de los rayos gamma observados. Un agujero negro en rotación está acretando plasma de la región interior de la galaxia. La superficie en forma de manzana (púrpura) muestra la ergosfera, en esta región la energía se puede extraer directamente del agujero negro. La rotación del agujero negro induce una magnetosfera (en rojo) con las regiones de vacío cerca de los polos (en amarillo). En esas zonasvacías, los campos eléctricos aceleran las partículas a energías ultra-relativistas. Esas partículas interactúan con los fotones térmicos de baja energía del plasma acretado por el agujero negro, produciendo los rayos gamma observados. Créditos: Aleksi? et al., 2014, publicado en Science Express, el 6 de noviembre de 2014.

Escenario para el origen de los rayos gamma observados. Un agujero negro en rotación está acretando plasma de la región interior de la galaxia. La superficie en forma de manzana (púrpura) muestra la ergosfera, en esta región la energía se puede extraer directamente del agujero negro. La rotación del agujero negro induce una magnetosfera (en rojo) con las regiones de vacío cerca de los polos (en amarillo). En esas zonasvacías, los campos eléctricos aceleran las partículas a energías ultra-relativistas. Esas partículas interactúan con los fotones térmicos de baja energía del plasma acretado por el agujero negro, produciendo los rayos gamma observados. Créditos: Aleksi? et al., 2014, publicado en Science Express, el 6 de noviembre de 2014.

Una tormenta de dimensiones cósmicas

"Es similar a lo que ocurre en las tormentas eléctricas", explica Oscar Blanch, investigador Ramón y Cajal del IFAE, y Co-Director de la Colaboración MAGIC. "Se crea una diferencia de potencial tan fuerte que acaba por descargarse como un relámpago". En este caso, la descarga alcanza las energías más altas observadas en la naturaleza y produce rayos gamma. El agujero negro parece estar envuelto en una tormenta de dimensiones estelares.

Continue reading

¿Oscuro y vacío destino final?

Proponen un nuevo modelo de energía oscura que predice un Cosmos futuro aún más vacío y aburrido que lo que se asumía.

Simulación a gran escala del Universo en la que se ven los filamentos de materia oscura. Fuente: John Wise, Tom Abel, Ralf Kaehler, Universidad de Stanford.

Simulación a gran escala del Universo en la que se ven los filamentos de materia oscura. Fuente: John Wise, Tom Abel, Ralf Kaehler, Universidad de Stanford.

La idea que tenían en el medioevo sobre el Universo era muy distinta de la que tenemos ahora. Incluso a principios del Siglo XX desconocían muchas cosas que conocemos nosotros en este nuevo siglo. Incluso el gran divulgador de la Astrofísica que fue Carl Sagan se murió sin saber de la existencia de la energía oscura, concepto que ha cambiado radicalmente la visión que tenemos sobre el Cosmos.

Continue reading

Arranca el proyecto para construir el mayor observatorio de axiones del mundo

Tras el descubrimiento del bosón de Higgs en el Gran Colisionador de Hadrones (LHC), se busca nueva frontera para la física de partículas. La materia oscura, una forma desconocida de materia que compone el 25% del Universo pero que aún no ha sido detectada, aparece como uno de los mayores retos. Hay múltiples experimentos persiguiéndola, cada uno basado en diversas teorías sobre su naturaleza, pero hasta ahora no hay señales inequívocas.

views_iaxo

Diseño conceptual del telescopio de axiones IAXO. Imagen: IAXO Collaboration.

Ante la falta de pistas de partículas 'pesadas' que la conformen, algunos científicos apuntan al axión, partícula más ligera que vendría a resolver además uno de los problemas del Modelo Estándar. Para detectarlo, una colaboración internacional entre los que se encuentran físicos españoles ha propuesto al CERN la construcción de IAXO, el Observatorio Internacional de Axiones. Los comités del laboratorio europeo de física de partículas han reconocido los objetivos del proyecto, que ahora entra en su fase decisiva: el diseño del instrumento.
Continue reading

Desenmascaran agujeros negros pequeños, pero voraces

La revista Nature publica mañana un artículo que aclara el misterio de las fuentes ultraluminosas en rayos X

Hace tres décadas, uno de los primeros telescopios espaciales capaces de captar rayos X en el espacio detectó un tipo de objeto desconocido: brillaba en rayos X más que cualquier estrella, pero mucho menos que otras fuentes identificadas, como los núcleos de galaxias activas. Con no mucha originalidad se bautizó a estos nuevos objetos fuentes X ultraluminosas o ULX. Y aún no está claro lo que son. Ahora, un grupo en el que participa un investigador postdoctoral del Instituto de Astrofísica de Canarias (IAC) y de la Universidad de La Laguna (ULL), Fabien Grisé, ha logrado descifrar este misterio y lo publica mañana en la revista Nature. Resulta que lo que hace brillar tanto a la fuente ULX mejor estudiada no es, como muchos esperaban, uno de los muy buscados agujeros negros de masa intermedia.

La fuente ultraluminosa observada, llamada ULX P13, sí que alberga un agujero negro, pero uno de tipo estelar, pequeño, de menos de 15 masas solares. ¿Cómo explicar entonces su brillo en rayos X, muy superior al que generaría cualquier agujero negro estelar conocido? Con una característica especial: el agujero negro de P13 come con una avidez mayor de lo habitual.
Continue reading

Sobre BICEP2 y PLANCK: ¿Proceden los modos-B del polvo galáctico?

Los últimos datos publicados por el equipo de la misión Planck indican que parte o toda de la señal de los modos de polarización observados por BICEP2 tendrían su origen en el polvo galáctico y no tendría un origen cosmológico.

Presencia de polvo en el cielo según la misión Planck. El recuadro de la derecha incida la región observada por BICEP2. Fuente: Misión Planck.

Presencia de polvo en el cielo según la misión Planck. El recuadro de la derecha incida la región observada por BICEP2. Fuente: Misión Planck.

 El anuncio de la primera evidencia sobre la inflación cósmica y las ondas gravitatorias cuánticas que surgieron tras el Big Bang ha sido valorada por los científicos como uno de los grandes descubrimientos del siglo, un hallazgo extraordinario equiparable al del famoso bosón de Higgs.  Sinc ha hablado con algunos de estos expertos para entender mejor el alcance del descubrimiento y saber cuándo se podría confirmar. Todas las miradas están puestas en los resultados del satélite Planck. Licencia : Creative Commons


El anuncio de la primera evidencia sobre la inflación cósmica y las ondas gravitatorias cuánticas que surgieron tras el Big Bang ha sido valorada por los científicos como uno de los grandes descubrimientos del siglo, un hallazgo extraordinario equiparable al del famoso bosón de Higgs. Sinc ha hablado con algunos de estos expertos para entender mejor el alcance del descubrimiento y saber cuándo se podría confirmar. Todas las miradas están puestas en los resultados del satélite Planck.
Licencia : Creative Commons

En marzo pasado se anunció la detección de modos-B de polarización cosmológicos en el fondo cósmico de microondas por parte del equipo de BICEP2 (ver referencias al final). Era la primera prueba de la presencia de ondas gravitatorias generadas por la inflación cósmica que se dio al comienzo del Big Bang.
El resultado estaba respaldado por 7 sigmas de significación estadística, 2 por encima de lo necesario para calificarse como descubrimiento. Parecía que estos y los chicos de la inflación estaban a las puertas del premio Nobel.
Sin embargo, en ciencia hay que ser cautos y esperar la confirmación de un resultado por parte de otros experimentos. Esta semana se han publicado datos de la misión Planck que menoscaban los resultados de BICEP2. Al parecer, la región del cielo observada por BICEP2 no está tan libre de polvo galáctico como se creía y parte o todos los modos de polarización observados no serían de origen cosmológico, sino que se producirían en nuestra propia galaxia.
Los investigadores de BICEP2 usaron los datos de polvo galáctico que había en el momento, parte de ellos procedentes precisamente de la misión Planck, para restar el efecto. Además apuntaban a una zona del cielo que estaba bastante libre de ese polvo. Eliminando la contribución de ese polvo (y de la radiación sincrotrón) obtuvieron el resultado que más tarde salió publicado.

History of the Universe http://bicepkeck.org/visuals.html The bottom part of this illustration shows the scale of the universe versus time. Specific events are shown such as the formation of neutral Hydrogen at 380 000 years after the big bang. Prior to this time, the constant interaction between matter (electrons) and light (photons) made the universe opaque. After this time, the photons we now call the CMB started streaming freely. The fluctuations (differences from place to place) in the matter distribution left their imprint on the CMB photons. The density waves appear as temperature and "E-mode" polarization. The gravitational waves leave a characteristic signature in the CMB polarization: the "B-modes". Both density and gravitational waves come from quantum fluctuations which have been magnified by inflation to be present at the time when the CMB photons were emitted. National Science Foundation (NASA, JPL, Keck Foundation, Moore Foundation, related) - Funded BICEP2 Program http://bicepkeck.org/faq.html Date 18 March 2014, 12:25:47 Source  http://bicepkeck.org/media/History-of-the-Universe-BICEP2.jpg

History of the Universe
http://bicepkeck.org/visuals.html
The bottom part of this illustration shows the scale of the universe versus time. Specific events are shown such as the formation of neutral Hydrogen at 380 000 years after the big bang. Prior to this time, the constant interaction between matter (electrons) and light (photons) made the universe opaque. After this time, the photons we now call the CMB started streaming freely. The fluctuations (differences from place to place) in the matter distribution left their imprint on the CMB photons. The density waves appear as temperature and "E-mode" polarization. The gravitational waves leave a characteristic signature in the CMB polarization: the "B-modes". Both density and gravitational waves come from quantum fluctuations which have been magnified by inflation to be present at the time when the CMB photons were emitted.
National Science Foundation (NASA, JPL, Keck Foundation, Moore Foundation, related) - Funded BICEP2 Program
http://bicepkeck.org/faq.html
Date 18 March 2014, 12:25:47
Source http://bicepkeck.org/media/History-of-the-Universe-BICEP2.jpg

Sin embargo, al parecer, hay más polvo del que se asumió. La señal del polvo galáctico es simplemente más significativa y más complicada de lo que los cosmólogos creían. Aún no se sabe si la señal observada procede del polvo en un 50%, en un 75% o en un 100%. Si fiera un 50% la señal cosmológica sólo se mantendría con 3 sigmas de significación estadística.

Continue reading