LHC y otros monstruos de la ciencia

Los grandes retos de la ciencia actual requieren de infraestructras e inversiones monstruosas entre las que están el Large Hadron Collider (LHC) -el acelerador de partículas que próximamente será el más potente del mundo-, el Observatorio Pierre Auger -el mayor detector de rayos cósmicos del momento-, la sonda Cassini Huygens -la nave espacial más grande en funcionamiento en la actualidad- y el telescopio de neutrinos más grande del mundo, AMANDA.

Video cortesia de smartplanet

Ultimamente se habla mucho del CERN y el LHC , pero hace ya muchos años que existen aceleradores de particulas o sincrotones.

TANDAR Acelerador lineal de particulas CNEA Argentina

El sincrotrón es un acelerador de partículas que acelera partículas cargadas inicialmente en un recipiente toroidal.

A diferencia de un ciclotrón que usa un campo magnético constante (que hace que las partículas giren) y un campo eléctrico constante (para acelerar las partículas), y de un sincrociclotrón, el cual varía uno de los dos campos, en el sincrotrón ambos campos se hacen variar para mantener el camino de las partículas de forma constante, o sea, el radio no varía demasiado. La velocidad máxima a la que las partículas se pueden acelerar está dada por el punto en que la radiación sincrotón emitida es igual a la energía inyectada.

En el ciclotrón isócrono, se construye un imán tal que el campo magnético es más fuerte cuando está más próximo a la circunferencia que en el centro de la misma, de esta manera se genera un aumento total y se mantiene la revolución a una frecuencia constante. En este dispositivo, un anillo de imanes rodea un tanque en forma de anillo de vacío. El campo magnético se incrementa con las velocidades del protón, las partículas se deben inyectar en un sincrotrón de otro acelerador.

El primer sincrotrón de protón fue el cosmotrón usado en el Laboratorio nacional Brookhaven (Nueva York), y comenzó a operar en 1952, logrando una energía de 3 GeV. Otro que le siguió fue el sincrotrón 500-GeV del laboratorio estadounidense Fermi National Accelerator en Batavia, Illinois, construido para ser el acelerador de más alcance del mundo a inicios de los años 70; su anillo delinea una circunferencia de aproximadamente 6 kilómetros. Esta máquina fue actualizada en 1983 para acelerar protones y contar antiprotones que se propagan a velocidades tan enormes que los impactos que sobrevienen entregan energías de hasta 2 trillones de electronvoltios (TeV), por ello el anillo se ha duplicado en el Tevatron.

El Tevatron es un ejemplo de una máquina que sería capaz de producir choques de rayos, y que es realmente un acelerador doble que se sobrealimenta de la separación de 2 rayos, luego de que estos chocan de frente o en un determinado ángulo de incidencia. Según efectos relativistas, producir las mismas reacciones con un acelerador convencional requeriría un solo rayo que al golpear un blanco inmóvil produciría mucho más de dos veces la energía liberada por cualquiera de los rayos que chocan.

Aceleradores de mayor alcance de velocidad son construidos ampliando el radio y usando compartimientos más numerosos y con gran alcance de microondas para acelerar la radiación de la partícula en los puntos tangenciales. Las partículas más ligeras (tales como electrones) pierden una fracción más grande de su energía al dar vuelta, ya que se mueven mucho más rápidamente que un protón de la misma energía, así que los sincrotrones de la alta energía aceleran partículas más grandes; protones o núcleos atómicos. Por ello se dice que el sincrotrón se puede utilizar para acelerar electrones pero es ineficaz. Una máquina circular que acelera electrones es el betatrón, inventado por Donald Kerst en 1939. Los electrones se inyectan en un compartimiento en forma de anillo de vacío que debe estar rodeado de un campo magnético. El campo magnético se aumenta constantemente, de tal forma que induce un campo eléctrico tangencial que acelerará a los electrones.

Sincrotrones actuales

Entre los sincrotrones más grandes, está el Bevatron, actualmente en desuso, construido en 1950 en el Lawrence Berkeley National Laboratory (California, EE.UU.) y que fue utilizado para establecer la existencia del antiprotón. El nombre de este acelerador de protones proviene de su energía, que está en la gama de 6.3 GeV (entonces llamado BeV por su mil millones de electronvoltios; un gran número de elementos pesados, no vistos en el mundo natural, fueron generados con esta máquina).

Al parecer el elevado coste es el factor limitador en fabricar aceleradores de partículas pesadas. El CERN, en Europa está desarrollando actualmente aceleradores un poco menos ambiciosos que avanzarán perceptiblemente en la forma de manejo de energía. Mientras hay potencial para todo tipo de aceleradores cíclicos de partículas pesadas, parece ser que la siguiente etapa demanda intensificar la energía de aceleración del electrón por la necesidad de evitar las pérdidas debido a la radiación sincrotrón. Esto motivará una vuelta al acelerador lineal, pero cuyos dispositivos serán notoriamente más largos que los actualmente en uso. Sin embargo la radiación sincrotrón es usada por muchos científicos y para ellos la producción de la radiación sincrotrón es el único propósito del mismo. La radiación sincrotrón es útil para una amplia gama de usos y muchos sincrotrones se han construido especialmente para producir su luz. SPring-8 en Japón es uno de ellos: su capacidad de alcance es la mayor en el mundo en lo que se refiere a aceleración del electrón (en fecha 2005) y es de 8 GeV.

Mecanica Cuantica

En física, la mecánica cuántica, conocida también como mecánica ondulatoria y como física cuántica, es una de las ramas principales de la física que explica el comportamiento de la materia. Su campo de aplicación pretende ser universal, pero es en lo pequeño donde sus predicciones divergen radicalmente de la llamada física clásica. Además, las velocidades de las partículas constituyentes no deben ser muy altas, o próximas a la velocidad de la luz. Su historia es inherente al siglo XX, ya que la primera formulación cuántica de un fenómeno fue dada a conocer un 17 de diciembre de 1900 en una sección de la Sociedad Física de la Academia de Ciencias de Berlín por el científico alemán Max Planck.

La mecánica cuántica rompe con cualquier paradigma de la física hasta ese momento, con ella se descubre que el mundo atómico no se comporta como esperaríamos. Los conceptos de incertidumbre, indeterminación o cuantización son introducidos por primera vez aquí. Además la mecánica cuántica es la teoría científica que ha proporcionado las predicciones experimentales más exactas hasta el momento, a pesar de su carácter probabilístico.

La teoría cuántica fue desarrollada en su forma básica a lo largo de la primera mitad del siglo XX. El hecho de que la energía se intercambie de forma discreta se puso de relieve por hechos experimentales como los siguientes, inexplicables con las herramientas teóricas "anteriores" de la mecánica clásica o la electrodinámica:

Espectro de la radiación del cuerpo negro, resuelto por Max Planck con la cuantización de la energía. La energía total del cuerpo negro resultó que tomaba valores discretos más que continuos. Este fenómeno se llamó cuantización, y los intervalos posibles más pequeños entre los valores discretos son llamados quanta (singular: quantum, de la palabra latina para "cantidad", de ahí el nombre de mecánica cuántica). El tamaño de un cuanto es un valor fijo llamado constante de Planck, y que vale: 6.626 ×10^-34 joules por segundo.
Bajo ciertas condiciones experimentales, los objetos microscópicos como los átomos o los electrones exhiben un comportamiento ondulatorio, como en la interferencia. Bajo otras condiciones, las mismas especies de objetos exhiben un comportamiento corpuscular, de partícula, ("partícula" quiere decir un objeto que puede ser localizado en una región especial del Espacio), como en la dispersión de partículas. Este fenómeno se conoce como dualidad onda-partícula.
Las propiedades físicas de objetos con historias relacionadas pueden ser correlacionadas en una amplitud prohibida por cualquier teoría clásica, en una amplitud tal que sólo pueden ser descritos con precisión si nos referimos a ambos a la vez. Este fenómeno es llamado entrelazamiento cuántico y la desigualdad de Bell describe su diferencia con la correlación ordinaria. Las medidas de las violaciones de la desigualdad de Bell fueron de las mayores comprobaciones de la mecánica cuántica.
Explicación del efecto fotoeléctrico, dada por Albert Einstein, en que volvió a aparecer esa "misteriosa" necesidad de cuantizar la energía.
Efecto Compton.
El desarrollo formal de la teoría fue obra de los esfuerzos conjuntos de varios físicos y matemáticos de la época como Schrödinger, Heisenberg, Einstein, Dirac, Bohr y Von Neumann entre otros (la lista es larga). Algunos de los aspectos fundamentales de la teoría están siendo aún estudiados activamente. La mecánica cuántica ha sido también adoptada como la teoría subyacente a muchos campos de la física y la química, incluyendo la física de la materia condensada, la química cuántica y la física de partículas.

La región de origen de la mecánica cuántica puede localizarse en la Europa central, en Alemania y Austria, y en el contexto histórico del primer tercio del siglo XX.

Universo Mecanico - Del Atomo al Quark

Mecanica Cuantica

La Mecánica cuántica describe el estado instantáneo de un sistema (estado cuántico) con una función de onda que codifica la distribución de probabilidad de todas las propiedades medibles, u observables. Algunos observables posibles sobre un sistema dado son la energía, posición, momento y momento angular. La mecánica cuántica no asigna valores definidos a los observables, sino que hace predicciones sobre sus distribuciones de probabilidad. Las propiedades ondulatorias de la materia son explicadas por la interferencia de las funciones de onda.

Estas funciones de onda pueden variar con el transcurso del tiempo. Esta evolución es determinista si sobre el sistema no se realiza ninguna medida aunque esta evolución es estocástica y se produce mediante colapso de la función de onda cuando se realiza una medida sobre el sistema (Postulado IV de la MC). Por ejemplo, una partícula moviéndose sin interferencia en el espacio vacío puede ser descrita mediante una función de onda que es un paquete de ondas centrado alrededor de alguna posición media. Según pasa el tiempo, el centro del paquete puede trasladarse, cambiar, de modo que la partícula parece estar localizada más precisamente en otro lugar. La evolución temporal determinista de las funciones de onda es descrita por la Ecuación de Schrödinger.

Algunas funciones de onda describen estados físicos con distribuciones de probabilidad que son constantes en el tiempo, estos estados se llaman estacionarios, son estados propios del operador hamiltoniano y tienen energía bien definida. Muchos sistemas que eran tratados dinámicamente en mecánica clásica son descritos mediante tales funciones de onda estáticas. Por ejemplo, un electrón en un átomo sin excitar se dibuja clásicamente como una partícula que rodea el núcleo, mientras que en mecánica cuántica es descrito por una nube de probabilidad estática que rodea al núcleo.

Cuando se realiza una medición en un observable del sistema, la función de ondas se convierte en una del conjunto de las funciones llamadas funciones propias o estados propios del observable en cuestión. Este proceso es conocido como colapso de la función de onda. Las probabilidades relativas de ese colapso sobre alguno de los estados propios posibles es descrita por la función de onda instantánea justo antes de la reducción. Considerando el ejemplo anterior sobre la partícula en el vacío, si se mide la posición de la misma, se obtendrá un valor impredecible x. En general, es imposible predecir con precisión qué valor de x se obtendrá, aunque es probable que se obtenga uno cercano al centro del paquete de ondas, donde la amplitud de la función de onda es grande. Después de que se ha hecho la medida, la función de onda de la partícula colapsa y se reduce a una que esté muy concentrada en torno a la posición observada x.

La ecuación de Schrödinger es en parte determinista en el sentido de que, dada una función de onda a un tiempo inicial dado, la ecuación suministra una predicción concreta de qué función tendremos en cualquier tiempo posterior. Durante una medida, el eigen-estado al cual colapsa la función es probabilista y en este aspecto es no determinista. Así que la naturaleza probabilista de la mecánica cuántica nace del acto de la medida.

Relatividad y la mecánica cuántica

El mundo moderno de la física se funda notablemente en dos teorías principales, la relatividad general y la mecánica cuántica, aunque ambas teorías parecen contradecirse mutuamente. Los postulados que definen la teoría de la relatividad de Einstein y la teoría del quántum estan incuestionablemente apoyados por rigurosa y repetida evidencia empiríca. Sin embargo, ambas se resisten a ser incorporadas dentro de un mismo modelo coherente.

El mismo Einstein es conocido por haber rechazado algunas de las demandas de la mecánica cuántica. A pesar de ser claramente inventivo en su campo, Einstein no aceptó la interpretación ortodoxa de la mecánica cuántica tales como la aserción de que una sola partícula subatómica puede ocupar numerosos espacios al mismo tiempo. Einstein tampoco aceptó las consecuencias de entrelazamiento cuántico aún más exóticas de la paradoja de Einstein-Podolsky-Rosen (o EPR), la cual demuestra que medir el estado de una partícula puede instantáneamente cambiar el estado de su socio enlazado, aunque las dos partículas pueden estar a una distancia arbitraria. Sin embargo, este efecto no viola la causalidad, puesto que no hay transferencia posible de información. De hecho, existen teorías cuánticas que incorporan a la relatividad especial -por ejemplo, la electrodinámica cuántica, la cual es actualmente la teoría física más comprobada- y éstas se encuentran en el mismo corazón de la física moderna de partículas.

Fuente wikipedia