Vídeo de interferencia cuántica

Realizan un vídeo de interferencia cuántica en el que usan moléculas relativamente grandes.

Patrones de interferencia de moléculas. Fuente: Nature..

Un experimento es una pregunta que se le hace a la Naturaleza. Dependiendo de lo habilidosos que seamos la respuesta puede ser más o menos interesante. Cuando nos vamos a la microescala en la que opera la Mecánica Cuántica (MC) el tipo de experimento que hagamos puede incluso cambiar completamente la respuesta que obtengamos.
Así por ejemplo, si queremos manifestar las propiedades ondulatorias de la luz un experimento de interferencia nos dice que la luz es efectivamente una onda. Si queremos manifestar su naturaleza corpuscular entonces un experimento fotoeléctrico nos dirá que efectivamente la luz se compone de partículas puntuales. La realidad es que la luz es la que es y somos nosotros los que la pretendemos encajar en un modelo mental nuestro, un modelo que no tiene por qué describir completamente la realidad física.
Esta dualidad también se presenta con partículas subatómicas. Así por ejemplo, podemos hacer interferir electrones entre sí y poner de manifiesto su naturaleza ondulatoria. Podemos lanzar un chorro de estas partículas hacia una doble rendija y ver como en la pantalla posterior se pone de manifiesto el típico patrón de interferencia.

Read more

Lo más sorprendente de este último experimento es que si de algún modo detectamos por dónde pasa el electrón, por qué rendija, entonces el patrón de interferencia desaparece y tenemos un comportamiento corpuscular. Al fijar un lugar por el que pasa o no el electrón estamos definiéndolo como un corpúsculo y de ahí que desaparezca su carácter ondulatorio.
Todo esto es aún más fascinante cuando en el haz de electrones de este experimento sólo hay un electrón de vez en cuando. Con eso impedimos que el electrón interfiera con otros electrones, pero aún así el efecto acumulado de varios electrones produce el patrón de interferencia. Digamos que la función de ondas del electrón “sabe” que hay dos rendijas y al explorarlas el electrón interfiere consigo mismo. De nuevo, si miramos por dónde pasa entonces desaparece la interferencia.
Este experimento de la doble rendija es muy famoso y viene en todos los artículos y libros de divulgación de MC.
Pero si no nos conformamos con electrones podemos seguir con partículas mayores y seguiremos obteniendo patrones de interferencia. Si usamos átomos completos y los lanzamos contra una doble rendija vemos que se comportan como ondas. También se ha hecho con buckybolas. Pero, ¿dónde está el límite? Los automóviles que van por la carretera no exhiben un comportamiento ondulatorio, no obedecen la MC, son objetos clásicos.

 

En algún punto el micromundo deja de ser cuántico para ser clásico al crecer hasta el macromundo. Generalmente se asume que se produce una decoherencia que impide a objetos lo suficientemente grandes exhibir comportamientos cuánticos.
¿A qué escala el mundo cuántico pasa a ser clásico? ¿Depende de nuestra habilidad o es intrínseco?
Pues bien, se ha llegado a realizar el experimento de la doble rendija con moléculas que constan de 400 átomos. Quizás algún día se pueda hacer con virus, no lo sabemos.
Ahora un grupo internacional de físicos ha realizado un vídeo en tiempo real en el que se ve el patrón de interferencia en un experimento de doble rendija cuando se usan moléculas orgánicas de 58 y 114 átomos (C32H18N8 y C48H26F24N8O8 respectivamente). Las moléculas se producen por micro evaporación gracias aun láser, proceso que evita la destrucción de las moléculas y genera un intenso haz coherente de moléculas.
Además crearon una red de difracción (un equivalente de la doble rendija, peor con varias rendijas en lugar de sólo dos) de nitruro de silicio con una separación de 10 nm entre rendijas.

 

http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2012.34.html

 

Para la detección de las moléculas emplearon microscopia por fluorescencia que depende de la excitación mediante un láser de las moléculas. La cámara permitía fijar la posición final de las moléculas con una precisión de 10 nm.
El video que grabaron permite apreciar el patrón de interferencia, patrón que responde de maravilla con los que aparecen en los libros de texto.
Se cree que esta tecnología se puede escalar para así usar moléculas aún más grandes. ¿Qué será lo próximo?, ¿grandes moléculas de proteína o ADN?

Fuente  http://neofronteras.com/?p=3790

 

Fuentes y referencias:
Artículo original.
Vídeo.

Experimento de Young

El experimento de Young, también denominado experimento de la doble rendija, fue realizado en 1801 por Thomas Young, en un intento de discernir sobre la naturaleza corpuscular u ondulatoria de la luz. Young comprobó un patrón de interferencias en la luz procedente de una fuente lejana al difractarse en el paso por dos rejillas, resultado que contribuyó a la teoría de la naturaleza ondulatoria de la luz.

Posteriormente, la experiencia ha sido considerada fundamental a la hora de demostrar la dualidad onda corpúsculo, una característica de la mecánica cuántica. El experimento también puede realizarse con electrones, protones o neutrones, produciendo patrones de interferencia similares a los obtenidos cuando se realiza con luz, mostrando, por tanto, el comportamiento dual onda-corpúsculo de la materia.

Aunque este experimento se presenta habitualmente en el contexto de la mecánica cuántica, fue diseñado mucho antes de la llegada de esta teoría para responder a la pregunta de si la luz tenía una naturaleza corpuscular o si, más bien, consistía en ondas viajando por el éter, análogamente a las ondas sonoras viajando en el aire. La naturaleza corpuscular de la luz se basaba principalmente en los trabajos de Newton. La naturaleza ondulatoria, en los trabajos clásicos de Hooke y Huygens.

Los patrones de interferencia observados restaban crédito a la teoría corpuscular. La teoría ondulatoria se mostró muy robusta hasta los comienzos del siglo XX, cuando nuevos experimentos empezaron a mostrar un comportamiento que sólo podía ser explicado por una naturaleza corpuscular de la luz. De este modo el experimento de la doble rendija y sus múltiples variantes se convirtieron en un experimento clásico por su claridad a la hora de presentar una de las principales características de la mecánica cuántica.

La forma en la que se presenta normalmente el experimento no se realizó sino hasta 1961 utilizando electrones y mostrando la dualidad onda-corpúsculo de las partículas subatómicas (Claus Jönsson, Zeitschrift für Physik, 161, 454; Electron diffraction at multiple slits, American Journal of Physics, 42, 4-11, 1974). En 1974 fue posible realizar el experimento en su forma más ambiciosa, electrón a electrón, comprobando las hipótesis mecanocuánticas predichas por Richard Feynman. Este experimento fue realizado por un grupo italiano liderado por Pier Giorgio Merli y repetido de manera más concluyente en 1989 por un equipo japonés liderado por Akira Tonomura y que trabajaba para la compañía Hitachi. El experimento de la doble rendija electrón a electrón se explica a partir de la interpretación probabilística de la trayectoria seguida por las partículas

Formulación clásicaLa formulación original de Young es muy diferente de la moderna formulación del experimento y utiliza una doble rendija. En el experimento original un estrecho haz de luz, procedente de un pequeño agujero en la entrada de la cámara, es dividido en dos por una tarjeta de una anchura de unos 0.2 mm. La tarjeta se mantiene paralela al haz que penetra horizontalmente es orientado por un simple espejo. El haz de luz tenía una anchura ligeramente superior al ancho de la tarjeta divisoria por lo que cuando ésta se posicionaba correctamente el haz era dividido en dos, cada uno pasando por un lado distinto de la pared divisoria. El resultado puede verse proyectado sobre una pared en una habitación oscurecida. Young realizó el experimento en la misma reunión de la Royal Society mostrando el patrón de interferencias producido demostrando la naturaleza ondulatoria de la luz.

Formulación modernaLa formulación moderna permite mostrar tanto la naturaleza ondulatoria de la luz como la dualidad onda-corpúsculo de la materia. En una cámara oscura se deja entrar un haz de luz por una rendija estrecha. La luz llega a una pared intermedia con dos rendijas. Al otro lado de esta pared hay una pantalla de proyección o una placa fotográfica. Cuando una de las rejillas se cubre aparece un único pico correspondiente a la luz que proviene de la rendija abierta. Sin embargo, cuando ambas están abiertas en lugar de formarse una imagen superposición de las obtenidas con las rendijas abiertas individualmente, tal y como ocurriría si la luz estuviera hecha de partículas, se obtiene una figura de interferencias con rayas oscuras y otras brillantes.

Este patrón de interferencias se explica fácilmente a partir de la interferencia de las ondas de luz al combinarse la luz que procede de dos rendijas, de manera muy similar a como las ondas en la superficie del agua se combinan para crear picos y regiones más planas. En las líneas brillantes la interferencia es de tipo "constructiva". El mayor brillo se debe a la superposición de ondas de luz coincidiendo en fase sobre la superficie de proyección. En las líneas oscuras la interferencia es "destructiva" con prácticamente ausencia de luz a consecuencia de la llegada de ondas de luz de fase opuesta (la cresta de una onda se superpone con el valle de otra).

La paradoja del experimento de Young

Esta paradoja trata de un experimento mental, un experimento ficticio no realizable en la práctica, que fue propuesto por Richard Feynman examinando teóricamente los resultados del experimento de Young analizando el movimiento de cada fotón.

Para la década de 1920, numerosos experimentos (como el efecto fotoeléctrico, el efecto Compton, y la producción de rayos x entre otros) habían demostrado que la luz interacciona con la materia únicamente en cantidades discretas, en paquetes "cuantizados" o "cuánticos" denominados fotones. Si la fuente de luz pudiera reemplazarse por una fuente capaz de producir fotones individualmente y la pantalla fuera suficientemente sensible para detectar un único fotón, el experimento de Young podría, en principio, producirse con fotones individuales con idéntico resultado.

Si una de las rendijas se cubre, los fotones individuales irían acumulándose sobre la pantalla en el tiempo creando un patrón con un único pico. Sin embargo, si ambas rendijas están abiertas los patrones de fotones incidiendo sobre la pantalla se convierten de nuevo en un patrón de líneas brillantes y oscuras. Este resultado parece confirmar y contradecir la teoría ondulatoria de la luz. Por un lado el patrón de interferencias confirma que la luz se comporta como una onda incluso si se envían partículas de una en una. Por otro lado, cada vez que un fotón de una cierta energía pasa por una de las rendijas el detector de la pantalla detecta la llegada de la misma cantidad de energía. Dado que los fotones se emiten uno a uno no pueden interferir globalmente así que no es fácil entender el origen de la "interferencia".

La teoría cuántica resuelve estos problemas postulando ondas de probabilidad que determinan la probabilidad de encontrar una partícula en un punto determinado, estas ondas de probabilidad interfieren entre sí como cualquier otra onda.

Un experimento más refinado consiste en disponer un detector en cada una de las dos rendijas para determinar por qué rendija pasa cada fotón antes de llegar a la pantalla. Sin embargo, cuando el experimento se dispone de esta manera las franjas desaparecen debido a la naturaleza indeterminista de la mecánica cuántica y al colapso de la función de onda.

Condiciones para la interferencia

Las ondas que producen interferencia han de ser "coherentes", es decir los haces provenientes de cada una de las rendijas han de mantener una fase relativa constante en el tiempo, además de tener la misma frecuencia, aunque esto último no es estrictamente necesario, puesto que puede hacerse el experimento con luz blanca. Además, ambos han de tener polarizaciones no perpendiculares. En el experimento de Young esto se consigue al hacer pasar el haz por la primera rendija, produciendo una mutilación del frente de onda en dos frentes coherentes. También es posible observar franjas de interferencia con luz natural. En este caso se observa un máximo central blanco junto a otros máximos laterales de diferentes colores. Más allá, se observa un fondo blanco uniforme. Este fondo no está formado realmente por luz blanca, puesto que si, fijada una posición sobre la pantalla, se pone paralelo a la franja un espectrómetro por el cual se hace pasar la luz, se observan alternadamente franjas oscuras y brillantes. Esto se ha dado en llamar espectro acanalado. Las dos rendijas han de estar cerca (unas 1000 veces la longitud de onda de la luz utilizada) o en otro caso el patrón de interferencias sólo se forma muy cerca de las rendijas. La anchura de las rendijas es normalmente algo más pequeña que la longitud de onda de la luz empleada permitiendo utilizar las ondas como fuentes puntuales esféricas y reduciendo los efectos de difracción por una única rendija.

Resultados observados

Se puede formular una relación entre la separación de las rendijas, s, la longitud de onda ?, la distancia de las rendijas a la pantalla D, y la anchura de las bandas de interferencia (la distancia entre franjas brillantes sucesivas), x

? / s = x / D

Esta expresión es tan sólo una aproximación y su formulación depende de ciertas condiciones específicas. Es posible sin embargo calcular la longitud de onda de la luz incidente a partir de la relación superior. Si s y D son conocidos y x es observado entonces ? puede ser calculado, lo cual es de especial interés a la hora de medir la longitud de onda correspondiente a haces de electrones u otras partículas.

 

En física, la interferencia es un fenómeno en el que dos o más ondas se superponen para formar una onda resultante de mayor o menor amplitud. El efecto de interferencia puede ser observado en cualquier tipo de ondas, como luz, radio, sonido, ondas en la superficie del agua, etc.

 
Superposición de ondas

 
En la mecánica ondulatoria la interferencia es el resultado de la superposición de dos o más ondas, resultando en la creación de un nuevo patrón de ondas. Aunque la acepción más usual para interferencia se refiere a la superposición de dos o más ondas de frecuencia idéntica o similar. Matemáticamente, la onda resultante es la suma algebraica de las ondas incidentes, de tal forma que la función de onda en un punto es la suma de todas las funciones de onda en ese punto.

El principio de superposición de ondas establece que. Esto es consecuencia de que la Ecuación de onda es lineal, y por tanto si existen dos o más soluciones, cualquier combinación lineal de ellas será también solución.

Sucesión (de arriba hacia abajo) de interferencia constructiva de ondas. El punto representa el antinodo y las flechas representan la dirección de las ondas.

Sucesión (de arriba hacia abajo) de una Interferencia destructiva. Las flechas representan la dirección de las ondas, mientras los puntos representan el nodo que produce la interferencia.

Superposición de ondas de la misma frecuencia

En la superposición de ondas con la misma frecuencia el resultado depende de la diferencia de fase \delta. Si sumamos dos ondas y_1=A\sin{(kx-\omega t)} y y_2=A\sin{(kx-\omega t + \delta)}, la onda resultante tendrá la misma frecuencia y amplitud 2A. Este tipo de interferencias da lugar a patrones de interferencia, ya que dependiendo de la fase, la interferencia será destructiva (las ondas se encuentran desfasadas 180 grados o \pi radianes) o constructiva (desfase de 0 grados/radianes).

La superposición de ondas de frecuencias ƒ1 y ƒ2 muy cercanas entre sí produce un fenómeno particular denominado pulsación (o batido).

En esos casos nuestro sistema auditivo no es capaz de percibir separadamente las dos frecuencias presentes, sino que se percibe una frecuencia única promedio (ƒ1 + ƒ2) / 2, pero que cambia en amplitud a una frecuencia de (ƒ2 - ƒ1) / 2 .

Es decir, si superponemos dos ondas senoidales de 300 Hz y 304 Hz, nuestro sistema auditivo percibirá un único sonido cuya altura corresponde a una onda de 302 Hz y cuya amplitud varía con una frecuencia de 2 Hz (es decir, dos veces por segundo).

Las pulsaciones se perciben para diferencias en las frecuencias de hasta aproximadamente 15-20 Hz.

 Pulsaciones o batidos

Si se da el caso de que la frecuencia de ambas ondas no es igual (f_1,f_2), pero si son valores muy cercanos entre sí, la onda resultante es una onda modulada en amplitud por la llamada "frecuencia de batido" cuyo valor corresponde a f_{\mbox{batido}}=\Delta f= | f_1 -f_2|, la frecuencia de esta onda modulada corresponde a la media de las frecuencias que interfieren.

Este fenómeno se usa por ejemplo, para afinar instrumentos (por ejemplo, un piano y un diapasón), ya que cuando las pulsaciones desaparecen, esto quiere decir que las frecuencias de ambos instrumentos son iguales (o casi iguales a un nivel que el batido no es detectable).

 

 

 

 

 

 

Entrelazamiento cuántico Stanford University

 

Share and Enjoy: These icons link to social bookmarking sites where readers can share and discover new web pages.
  • MisterWong
  • Y!GG
  • Webnews
  • Digg
  • del.icio.us
  • StumbleUpon
  • Reddit
  • Ask
  • BarraPunto
  • De.lirio.us
  • Meneame
  • Technorati
  • Upnews
  • YahooBuzz

Comments are closed.